LATVIA"S ENERGY LANDSCAPE EVOLVES WITH NEW BATTERY STORAGE
We found that commercial lithium-ion batteries can emit considerable amounts of HF during a fire and that the emission rates vary for different types of batteries and SOC levels.
The most recent update regarding BESS installations is that in Tume and Rēzekne, Latvia's transmission system operator “Augstsprieguma tīkli” (AST) in June 2025 installed battery energy storage systems with a combined capacity of 80 MW and 160 MWh, which will undergo testing until October 2025.
A novel integration of Lithium-ion batteries with other energy storage technologies is proposed. Lithium-ion batteries (LIBs) have become a cornerstone technology in the transition towards a sustainable energy future, driven by their critical roles in electric vehicles, portable electronics, renewable energy integration, and grid-scale storage.
In November 2024, Utilitas Wind Ltd inaugurated Latvia's first storage battery system with a capacity of 10 MW and 20 MWh in Targale, next to the existing wind park.
These limitations associated with Li-ion battery applications have significant implications for sustainable energy storage. For instance, using less-dense energy cathode materials in practical lithium-ion batteries results in unfavorable electrode-electrolyte interactions that shorten battery life. .
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed product specifications, case studies, and technical data for our off-grid PV containers and mobile energy storage solutions.
15 Innovation Drive
Johannesburg 2196, South Africa
+27 87 702 3126
Monday - Friday: 7:30 AM - 5:30 PM SAST