Battery vs Supercapacitor: A Comparative Analysis
Learn the differences and advantages of batteries and supercapacitors for energy storage in various applications, such as electric vehicles and renewable energy systems.
The fundamental difference between supercapacitors and batteries lies in their energy storage mechanisms. Batteries consist of electrodes, specifically an anode and a cathode, submerged in an electrolyte. Batteries store energy in a chemical form through electrochemical reactions between positive and negative electrodes and an electrolyte.
Energy Density: Supercapacitors store much less energy per unit volume or weight compared to conventional batteries. In EVs, energy density translates to mileage per charge. Thus, batteries are more suitable in applications requiring large energy storage.
During charging cycles, supercapacitors only experience about 1 percent energy loss, compared to up to 30 percent for lead-acid batteries. Table 1: Comparison of key specification differences between lead-acid batteries, lithium-ion batteries and supercapacitors. Abbreviated from: Source.
As shown in Figure 2, the energy density of fuel cells and batteries exceeds supercapacitors. Electrical energy is stored in the form of chemical energy, which happens to be more energy-dense than capacitor-based electrostatic energy storage.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed product specifications, case studies, and technical data for our off-grid PV containers and mobile energy storage solutions.
15 Innovation Drive
Johannesburg 2196, South Africa
+27 87 702 3126
Monday - Friday: 7:30 AM - 5:30 PM SAST