Flow Batteries: Definition, Pros + Cons, Market Analysis & Outlook
While you may be familiar with traditional battery types such as lead-acid, Ni-Cd and lithium-ion, flow batteries are a lesser-known but increasingly important technology in the
You might believe that flow batteries are a new technology merely invented over the past few years. Actually, the development of flow batteries can be traced back to the 1970s when Lawrence Thaller at NASA created the first prototype of this battery type.
Among the various types, some well-known variants include vanadium redox flow batteries (VRFBs) and zinc-based flow batteries. Flow batteries work by storing energy in chemical form in separate tanks and utilizing electrochemical reactions to generate electricity. Specifically, each tank of a flow battery contains one of the electrolyte solutions.
Unlike some other types of batteries, flow batteries don't contain flammable electrolytes, which reduces the risk of fire or explosion. The design of flow battery storage systems allows for the storage tanks to be installed separately from the conducting cell membrane and power stack, further enhancing safety.
Compared to lithium-ion batteries, flow batteries offer superior scalability due to their ability to easily increase energy capacity by adding more electrolytes to the tanks. Lithium-ion batteries, on the other hand, have limited scalability, as their capacity is primarily determined by the number of cells in the battery pack.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed product specifications, case studies, and technical data for our off-grid PV containers and mobile energy storage solutions.
15 Innovation Drive
Johannesburg 2196, South Africa
+27 87 702 3126
Monday - Friday: 7:30 AM - 5:30 PM SAST