Flow Batteries: Definition, Pros + Cons, Market Analysis & Outlook
Flow batteries work by storing energy in chemical form in separate tanks and utilizing electrochemical reactions to generate electricity. Specifically, each tank of a flow
Flow batteries operate distinctively from “solid” batteries (e.g., lead and lithium) in that a flow battery's energy is stored in the liquid electrolytes that are pumped through the battery system (see image above) while a solid-state battery stores its energy in solid electrodes. There are several components that make up a flow battery system:
Flow batteries exhibit significant advantages over alternative battery technologies in several aspects, including storage duration, scalability and longevity, making them particularly well-suited for large-scale solar energy storage projects.
Flow batteries are a new entrant into the battery storage market, aimed at large-scale energy storage applications. This storage technology has been in research and development for several decades, though is now starting to gain some real-world use. Flow battery technology is noteworthy for its unique design.
Flow batteries differ from other types of rechargeable solar batteries in that their energy-storing components—the electrolytes—are housed externally in tanks, not within the cells themselves. The size of these tanks dictates the battery's capacity to generate electricity: larger tanks mean more energy storage.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Download detailed product specifications, case studies, and technical data for our off-grid PV containers and mobile energy storage solutions.
15 Innovation Drive
Johannesburg 2196, South Africa
+27 87 702 3126
Monday - Friday: 7:30 AM - 5:30 PM SAST